Elementary matrices

Definition: An $n \times n$ matrix is an elementary matrix if it can be obtained from I_{n} by a single elementary row operation. It is of type I, II, or III if the operation is that type.
 matrices, but

$$
\left[\begin{array}{cc}
-1 & 5 \\
0 & 1
\end{array}\right] \text { is not. }
$$

What happens if we multiply by an elementary matrix?

$$
\begin{aligned}
& \text { Let } A=\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right] \\
& E_{1} A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right]=\left[\begin{array}{lll}
d & e & f \\
a & b & c
\end{array}\right] \\
& E_{2} A=\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right]=\left[\begin{array}{ccc}
2 a & 2 b & 2 c \\
d & e & f
\end{array}\right] \\
& E_{3} A=\left[\begin{array}{ccc}
a & b & c \\
d-5 a & e-5 b & f-5 c
\end{array}\right]
\end{aligned}
$$

i.e. each product is A after the corresponding row operation is applied. This holds in general:

Theorem: If A is an $m \times n$ matrix and E is an elementary $m \times m$ matrix, then $E A$ is the matrix obtained by performing The wo operation corresponding to E on A.

Every row operation can be "undone" by performing an "inverse" operation of the same type.

Ex: $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \underset{\substack{\text { add } \\ \text { 3. row } 1 \\ \text { forow } 2}}{ }\left[\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right] \underset{\substack{\text { subtract } \\ 3 \cdot \text { row } \\ \text { from row } 2}}{ }\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.

More generally, we can reverse each type of wow operation as follows:

Operation
Type I: Swap rows p and q

Type II: Multiply wow p by $k \neq 0$

Type III: Add k times
row p to row

$$
q \neq p
$$

Inverse operation
Swap wows p and q
Multiply row p by $1 / k, \quad k \neq 0$

Subtract k times row p from tow q, $q \neq p$.

This gives us a way to construct inverses for elementary matrices:

That is, if E is an elementary matrix, and F is the elementary matrix corresponding to the inverse operation, then $F E=I$, so $F=E^{-1}$.

$$
\begin{aligned}
& \text { Ex: }\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]^{-1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \\
& {\left[\begin{array}{cc}
2 & 0 \\
0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{ll}
1 / 2 & 0 \\
0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{cc}
1 & 0 \\
-5 & 1
\end{array}\right]^{-1}=\left[\begin{array}{ll}
1 & 0 \\
5 & 1
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & -17 & 0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 17 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

As a result, the following holds:
All elementary matrices are invertible

Inverses and elementary matrices

Recall that a matrix A is invertible if and only if
$A \rightarrow I$ by elementary wow operations. Thus, we can also get I by multiplying A by elementary matrices.

$$
\begin{aligned}
& \text { Ex: } A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & -2 & 0 \\
0 & 0 & 5
\end{array}\right] \\
& {[A \mid I] \underset{(0 \leftrightarrow 2}{\longrightarrow}\left[\begin{array}{ccc|ccc}
1 & -2 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 5 & 0 & 0 & 1
\end{array}\right] \underset{(1+2 \cdot(2)}{\longrightarrow}\left[\begin{array}{lll|lll}
1 & 0 & 0 & 2 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 5 & 0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

$\xrightarrow{\frac{1}{5}(3)}\left[\begin{array}{ccc|c}1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 / s\end{array}\right]$
Corresponding el ementary matrices:

$$
E_{1}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], E_{2}=\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], E_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 / 5
\end{array}\right]
$$

so $E_{3} E_{2} E_{1} A=I$ and $E_{3} E_{2} E_{1} I=A^{-1}$

$$
\Rightarrow A^{-1}=E_{3} E_{2} E_{1} \text { and } A=\underbrace{E_{1}^{-1} E_{2}^{-1} E_{3}^{-1}}_{\begin{array}{c}
\text { also elementary } \\
\text { matrices. }
\end{array}}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & -2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 5
\end{array}\right]
$$

Theorem: A square matrix is invertible if and only if it is the product of elementary matrices.

Moreover, for any two matrices A, B such that $A \rightarrow B$ via cow operations, we have $B=U A$ for U an invertible square matrix (the product of the corresponding elementary matrices).

Equivalently, we can start with

$$
\left[\begin{array}{ll}
A & I_{m}
\end{array}\right] \xrightarrow{\text { and get }}\left[\begin{array}{ll}
B & U
\end{array}\right]
$$

Practice problems: 2.5 : lace, 2 def, 3, $6 b c, 8 b d, 12 c$

